Search results for "density functional theory calculation"

showing 7 items of 7 documents

High-valent bis(oxo)-bridged dinuclear manganese oxamates: Synthesis, crystal structures, magnetic properties, and electronic structure calculations …

2007

[EN] Two novel bis(oxo)-bridged dinuclear manganese(IV) complexes with the binucleating ligand o-phenylenebis(oxamate) (opba), formulated as (Me4N)(4)[Mn2O2(opba)(2)] (1a) and (Me4N)(2)(Ph4P)(2)[Mn2O2(opba)(2)] (.) 8H(2)O (1b), have been synthesized and characterized structurally and magnetically. Like the parent complex (Ph4P)(4)[Mn2O2(opba)(2)] (.) 4H(2)O (1c), they possess unique Mn-2(mu-O)(2) bridging cores with two additional o-phenylenediamidate bridges which lead to exceptionally short Mn-Mn distances (2.63-2.67 angstrom) and fairly bent Mn-O-Mn angles (93.8-95.5 degrees). Complexes 1a-c show a moderate to strong antiferromagnetic coupling between the two high-spin Mn-IV ions through…

ManganeseStereochemistryIntermetallicchemistry.chemical_elementManganeseElectronic structureCrystal structureAmidesInductive couplingAntiferromagnetic couplingPhotosystem IIIonInorganic ChemistryCrystallographyCarboxylateschemistrySuperexchangeFISICA APLICADADensity functional theory calculationsMagnetic propertiesMaterials ChemistryPhysical and Theoretical ChemistryInorganica Chimica Acta
researchProduct

Metalloporphyrin intercalation in liposome membranes: ESR study

2010

Liposomes characterized by membranes featuring diverse fluidity (liquid-crystalline and/or gel phase), prepared from egg yolk lecithin (EYL) and dipalmitoylphosphatidylcholine (DPPC), were doped with selected metalloporphyrins and the time-related structural and dynamic changes within the lipid double layer were investigated. Porphyrin complexes of Mg(II), Mn(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and the metal-free base were embedded into the particular liposome systems and tested for 350 h at 24°C using the electron spin resonance (ESR) spin probe technique. 5-DOXYL, 12-DOXYL, and 16-DOXYL stearic acid methyl ester spin labels were applied to explore the interior of the lipid bila…

Models MolecularOriginal PaperLiposomeMolecular StructureMetalloporphyrinsIntercalation (chemistry)Electron Spin Resonance SpectroscopyPorphyrinBiochemistryLipid bilayerSpin probeInorganic Chemistrychemistry.chemical_compoundCrystallographyMembranechemistryElectron spin resonanceDipalmitoylphosphatidylcholineLiposomesDensity functional theory calculationsOrganic chemistrylipids (amino acids peptides and proteins)Lipid bilayer phase behaviorLipid bilayerJBIC Journal of Biological Inorganic Chemistry
researchProduct

Quantitative Analysis of the Interactions of Metal Complexes and Amphiphilic Systems: Calorimetric, Spectroscopic and Theoretical Aspects.

2022

Metals and metal-based compounds have many implications in biological systems. They are involved in cellular functions, employed in the formation of metal-based drugs and present as pollutants in aqueous systems, with toxic effects for living organisms. Amphiphilic molecules also play important roles in the above bio-related fields as models of membranes, nanocarriers for drug delivery and bioremediating agents. Despite the interest in complex systems involving both metal species and surfactant aggregates, there is still insufficient knowledge regarding the quantitative aspects at the basis of their binding interactions, which are crucial for extensive comprehension of their behavior in sol…

Molecular dynamics simulationsSpeciationCalorimetryBiochemistryBiological membraneAmphiphilic systemsKineticsMetal complexesSpectrophotometrySettore CHIM/03 - Chimica Generale E InorganicaCoordination ComplexesMetalsSolution thermodynamicsDensity functional theory calculationsDrug deliveryIsothermal titration calorimetryThermodynamicsMolecular Biologymetal complexes; amphiphilic systems; drug delivery; biological membrane; solution thermodynamics; speciation; isothermal titration calorimetry; spectrophotometry; molecular dynamics simulations; density functional theory calculationsBiomolecules
researchProduct

A potential solution to avoid overdose of mixed drugs in the event of Covid-19: Nanomedicine at the heart of the Covid-19 pandemic.

2021

Since 2020, the world is facing the first global pandemic of 21st century. Among all the solutions proposed to treat this new strain of coronavirus, named SARS-CoV-2, the vaccine seems a promising way but the delays are too long to be implemented quickly. In the emergency, a dual therapy has shown its effectiveness but has also provoked a set of debates around the dangerousness of a particular molecule, hydroxychloroquine. In particular, the doses to be delivered, according to the studies, were well beyond the acceptable doses to support the treatment without side effects. We propose here to use all the advantages of nanovectorization to address this question of concentration. Using quantum…

Protein Conformation alpha-HelicalComputer science02 engineering and technologyAzithromycinDrug Delivery SystemsPandemicMaterials ChemistryDrug Dosage CalculationsSpectroscopymedia_common0303 health sciencesEvent (computing)021001 nanoscience & nanotechnologyComputer Graphics and Computer-Aided DesignMolecular Docking SimulationNanomedicineRisk analysis (engineering)Spike Glycoprotein CoronavirusDensity functional theory calculationsNanomedicineThermodynamicsNitrogen OxidesAngiotensin-Converting Enzyme 20210 nano-technologyHydroxychloroquineProtein BindingDrugBoron CompoundsCoronavirus disease 2019 (COVID-19)media_common.quotation_subjectSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)Molecular Dynamics SimulationAntiviral AgentsArticle03 medical and health sciencesHumansProtein Interaction Domains and MotifsDual therapyPhysical and Theoretical Chemistry030304 developmental biologyDrug transportBinding SitesSARS-CoV-2Molecular dynamics simulationsCOVID-19NanostructuresCOVID-19 Drug TreatmentKineticsQuantum TheoryProtein Conformation beta-StrandNanovectorizationJournal of molecular graphicsmodelling
researchProduct

Conformational investigation of α,β‐dehydropeptides. XV: N‐acetyl‐α,β‐dehydroamino acid N ′N ′‐dimethylamides: conformational properties from infrare…

2005

The FTIR spectra were analysed in the region of the nu(s)(N-H), AI(C=O) and nu(s)(Calpha=Cbeta) bands for a series of Ac-DeltaXaa-NMe2, where DeltaXaa = DeltaAla, (Z)-DeltaAbu, (Z)-DeltaLeu, (Z)-DeltaPhe and DeltaVal, to determine a predominant solution conformation of these alpha,beta-dehydropeptide-related molecules. Measurements were taken in CCl4, DCM and MeCN solutions. In the same way, spectra of saturated analogues Ac-Xaa-NMe2, where Xaa = Ala, Abu, Leu, Phe and Val, were investigated. To help interpret the spectroscopic results, conformational maps were calculated by the B3LYP/6-31+G** method. Also, the relative energies of all conformers of the dehydro compounds in vacuo as well as…

conformationStereochemistryProtein ConformationαPeptideamide/π(Ph) interactionBiochemistrySpectral linechemistry.chemical_compoundStructural BiologyAmideDrug DiscoverySpectroscopy Fourier Transform InfraredSide chainMoleculeC5 hydrogen bondFourier transform infrared spectroscopysolute/solvent interactionMolecular BiologyConformational isomerismβ‐dehydroamino acidsPharmacologychemistry.chemical_classificationChemistryHydrogen bondOrganic ChemistryGeneral MedicineModels TheoreticalAmidestheoretical IR frequenciesFTIR spectroscopyMolecular Medicinedensity functional theory calculationsPeptidesJournal of Peptide Science
researchProduct

Dynamics of Metal Centers Monitored by Nuclear Inelastic Scattering

2005

Nuclear inelastic scattering of synchrotron radiation has been used now since 10 years as a tool for vibrational spectroscopy. This method has turned out especially useful in case of large molecules that contain a M\"ossbauer active metal center. Recent applications to iron-sulfur proteins, to iron(II) spin crossover complexes and to tin-DNA complexes are discussed. Special emphasis is given to the combination of nuclear inelastic scattering and density functional calculations.

iron-sulfur proteinspin crossover complexeChemical Physics (physics.chem-ph)Nuclear and High Energy PhysicsMaterials scienceFOS: Physical sciencesSynchrotron radiationInfrared spectroscopyInelastic scatteringCondensed Matter Physicsvibrational spectroscopyAtomic and Molecular Physics and Opticsnuclear inelastic scatteringMetalSettore CHIM/03 - Chimica Generale E InorganicaSpin crossovervisual_artPhysics - Chemical PhysicsMössbauer spectroscopyvisual_art.visual_art_mediumMoleculedensity functional theory calculationsPhysical and Theoretical ChemistryAtomic physicsSettore CHIM/02 - Chimica Fisica
researchProduct

Gallium preference for the occupation of tetrahedral sites in Lu3(Al5-xGax)O12multicomponent garnet scintillators according to solid-state nuclear ma…

2019

Abstract In this study, the distributions of aluminum and gallium atoms over the tetrahedral and octahedral sites in the garnet structure were investigated in mixed Lu3Al5-xGaxO12 crystals by using 27Al and 71Ga magic angle spinning nuclear magnetic resonance (NMR) and single crystal 71Ga NMR. The experimental study was supported by theoretical calculations based on density functional theory (DFT) in order to predict the trends in terms of the substitutions of Al by Ga in the mixed garnets. Both the experimental and theoretical results indicated the non-uniform distribution of Al and Ga over the tetrahedral and octahedral sites in the garnet structure, with a strong preference for Ga occupy…

spectroscopyIonic radiusMaterials scienceRelaxation (NMR)chemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesCrystallographyChemical bondchemistrySolid-state nuclear magnetic resonanceSolid-state nuclear magnetic resonanceMagic angle spinningGeneral Materials ScienceDensity functional theoryLu3Al5-xGaxO12Gallium0210 nano-technologydensity functional theory calculationSingle crystalJournal of Physics and Chemistry of Solids
researchProduct